Chapter 8 - Regression Wisdom

 a) The trend in age at first marriage for American women is very strong over the entire time period recorded on the graph, but the direction and form are different for different time periods. The trend appears to be somewhat linear, and consistent at around 22 years, up until about 1940, when the age seemed to drop dramatically, to under 21. From 1940 to about 1970, the trend appears non-linear and slightly positive. From 1975 to the present, the trend again appears linear and positive. The marriage age rose rapidly during this time period.

 b) The association between age at first marriage for American women and year is strong over the entire time period recorded on the graph, but some time periods have stronger trends than others.

 c) The correlation, or the measure of the degree of linear association is not high for this trend. The graph, as a whole, is non-linear. However, certain time periods, like 1975 to present, have a high correlation.

 d) Overall, the linear model is not appropriate. The scatterplot is not Straight Enough to satisfy the condition. You could fit a linear model to the time period from 1975 to 1995, but this seems unnecessary. The ages for each year are reported, and, given the fluctuations in the past, extrapolation seems risky.

 a) The percent of men 18 – 24 who are smokers decreased dramatically between 1965 and 1990, but the trend has not been consistent since then.

 b) The association between percent of men 18 – 24 who smoke and year is very strong from 1965 to 1990, but is erratic after 1990.

 c) A linear model is not an appropriate model for the trend in the percent of males 18 – 24 who are smokers. The relationship is not straight.

3. Human Development Index.
 a) Fitting a linear model to the association between HDI and GDPPC would be misleading, since the relationship is not straight.

 b) If you fit a linear model to these data, the residuals plot will be curved downward.

 c) Setting aside the single data point corresponding to Luxembourg will not improve the model. The relationship will still be curved.
4. HDI revisited.
 a) Fitting a linear model to the association between the number of cell phones and HDI would be misleading, since the relationship is not straight.
 b) The residuals plot will be curved downward.

5. Good model?
 a) The student’s reasoning is not correct. A scattered residuals plot, not high R^2, is the indicator of an appropriate model. Once the model is deemed appropriate, R^2 is used as a measure of the strength of the model.
 b) The model may not allow the student to make accurate predictions. The data may be curved, in which case the linear model would not fit well.

6. Bad model?
 a) The student’s model may, in fact, be appropriate. Low R^2 simply means that the model is not accurate. The model explains only 13% of the variability in the response variable. If the residuals plot shows no pattern, this model may be appropriate.
 b) The predictions are not likely to be very accurate, but they may be the best that the student can get. $R^2 = 13\%$ indicates a great deal of scatter around the regression line, but if the residuals plot is not patterned, there probably isn’t a better model. The two variables that are being studied by the student have a weak association.

7. Movie Dramas.
 a) The units for the slopes of these lines are millions of dollars per minutes of running time.
 b) The slopes of the regression lines are the same. Dramas and movies from other genres have costs for longer movies that increase at the same rate.
 c) The regression line for dramas has a lower y-intercept. Regardless of running time, dramas cost about 20 million dollars less than other genres of movies of the same running time.

 a) Smoking rates for both men and women in the United States have decreased significantly over the time period from 1965 to 2009.
 b) Smoking rates are generally lower for women than for men.
 c) The trend in the smoking rates for women seems a bit straighter than the trend for men. The apparent curvature in the scatterplot for the men could possibly be due to just a few points, and not indicate a serious violation of the linearity condition.

This observation was influential. After it was removed, the correlation and the slope of the regression line both changed by a large amount.

10. Abalone again.

No. Some data points will have higher residuals than others. While large residuals should be looked at carefully, it is not proper to simply remove all those data points. Furthermore, high leverage points often have small residuals, since they can dominate a regression, shifting the regression line toward themselves. Outliers should primarily be identified by looking at the scatterplot, not the residuals.

11. Skinned knees.

No. There is a lurking variable, seasonal temperature. In warm weather, more children will go outside and play, and if there are more children playing, there will be more skinned knees.

No. There is a lurking variable, wealth. Wealthier countries typically have more cell phones and better healthcare.

Individual student scores will vary greatly. The class averages will have much less variability and may disguise important patterns.

14. Average GPA.

The individual GPAs for each team are going to vary widely. Also, the rest of the team may hide a few individuals with low GPAs. These summaries are a risky method for predicting the students’ graduation rates.

15. Oakland passengers.

a) According to the linear model, the use of the Oakland airport has been increasing by about 59,700 passengers per year, starting at about 282,000 passengers in 1990.

b) About 71% of the variability in the number of passengers can be accounted for by the model.

c) Errors in prediction based on the model have a standard deviation of 104,330 passengers.

d) No, the model would not be useful in predicting the number of passengers in 2010. This year would be an extrapolation too far from the years we have observed.

e) The negative residual is September of 2001. Air traffic was artificially low following the attacks on 9/11/2001.

a) According to the linear model, tracking errors averaged about 132 nautical miles in 1970, and have decreased an average of 2 nautical miles per year since then.

b) Residuals based on this model have a standard deviation of 16.44 nautical miles.

c) The linear model for the trend in predicting error is

\[\hat{\text{Error}} = 132.301 - 2.00662(\text{Year} - 1970). \]

\[\hat{\text{Error}} = 132.301 - 2.00662(\text{Year} - 1970) \]

\[\text{Error} = 132.301 - 2.00662(45) \]

\[\text{Error} = 42.003 \]

The model predicts an error of 42 nautical miles in 2015. This is consistent with the goal of achieving average tracking errors below 45 nautical miles.

d) A tracking error of 25 nautical miles is not likely to be achieved if the trend fit by the regression model continues, but this is an extrapolation beyond the data.

e) We should be cautious in assuming that the improvements in prediction will continue at the same rate. They may improve faster, and perhaps the goal will be met. We can’t say with any certainty.

17. Unusual points.

a) 1) The point has high leverage and a small residual.
 2) The point is not influential. It has the potential to be influential, because its position far from the mean of the explanatory variable gives it high leverage. However, the point is not exerting much influence, because it reinforces the association.
 3) If the point were removed, the correlation would become weaker. The point heavily reinforces the positive association. Removing it would weaken the association.
 4) The slope would remain roughly the same, since the point is not influential.

b) 1) The point has high leverage and probably has a small residual.
 2) The point is influential. The point alone gives the scatterplot the appearance of an overall negative direction, when the points are actually fairly scattered.
 3) If the point were removed, the correlation would become weaker. Without the point, there would be very little evidence of linear association.
 4) The slope would increase, from a negative slope to a slope near 0. Without the point, the slope of the regression line would be nearly flat.
c) 1) The point has moderate leverage and a large residual.
2) The point is somewhat influential. It is well away from the mean of the explanatory variable, and has enough leverage to change the slope of the regression line, but only slightly.
3) If the point were removed, the correlation would become stronger. Without the point, the positive association would be reinforced.
4) The slope would increase slightly, becoming steeper after the removal of the point. The regression line would follow the general cloud of points more closely.

d) 1) The point has little leverage and a large residual.
2) The point is not influential. It is very close to the mean of the explanatory variable, and the regression line is anchored at the point \((\bar{x}, \bar{y})\), and would only pivot if it were possible to minimize the sum of the squared residuals. No amount of pivoting will reduce the residual for the stray point, so the slope would not change.
3) If the point were removed, the correlation would become slightly stronger, decreasing to become more negative. The point detracts from the overall pattern, and its removal would reinforce the association.
4) The slope would remain roughly the same. Since the point is not influential, its removal would not affect the slope.

18. More unusual points.

a) 1) The point has high leverage and makes the large residual a bit smaller.
2) The point is influential. It is well away from the mean of the explanatory variable, and has enough leverage to change the slope of the regression line.
3) If the point were removed, the correlation would become stronger. Without the point, the positive association would be reinforced.
4) The slope would increase, becoming steeper after the removal of the point. The regression line would follow the general cloud of points more closely.

b) 1) The point has high leverage and a small residual.
2) The point is influential. The point alone gives the scatterplot the appearance of an overall positive direction, when the points are actually fairly scattered.
3) If the point were removed, the correlation would become weaker. Without the point, there would be very little evidence of linear association.
4) The slope would decrease, from a positive slope to a slope near 0. Without the point, the slope of the regression line would be nearly flat.
c) 1) The point has little leverage and a large residual.
2) The point is not influential. It is very close to the mean of the explanatory variable, and the regression line is anchored at the point \((\bar{x}, \bar{y})\), and would only pivot if it were possible to minimize the sum of the squared residuals. No amount of pivoting will reduce the residual for the stray point, so the slope would not change.
3) If the point were removed, the correlation would become slightly stronger. The point detracts from the overall pattern, and its removal would reinforce the association.
4) The slope would remain roughly the same. Since the point is not influential, its removal would not affect the slope.

d) 1) The point has high leverage and a small residual.
2) The point is not influential. It has the potential to be influential, because its position far from the mean of the explanatory variable gives it high leverage. However, the point is not exerting much influence, because it reinforces the association.
3) If the point were removed, the correlation would become weaker. The point heavily reinforces the association. Removing it would weaken the association.
4) The slope would remain roughly the same, since the point is not influential.

19. The extra point.

1) Point e is very influential. Its addition will give the appearance of a strong, negative correlation like \(r = -0.90 \).
2) Point d is influential (but not as influential as point e). Its addition will give the appearance of a weaker, negative correlation like \(r = -0.40 \).
3) Point c is directly below the middle of the group of points. Its position is directly below the mean of the explanatory variable. It has no influence. Its addition will leave the correlation the same, \(r = 0.00 \).
4) Point b is almost in the center of the group of points, but not quite. Its addition will give the appearance of a very slight positive correlation like \(r = 0.05 \).
5) Point a is very influential. Its addition will give the appearance of a strong, positive correlation like \(r = 0.75 \).

20. The extra point revisited.

1) Point d is influential. Its addition will pull the slope of the regression line toward point d, resulting in the steepest negative slope, a slope of \(-0.45\).
2) Point e is very influential, but since it is far away from the group of points, its addition will only pull the slope down slightly. The slope is \(-0.30\).
3) Point c is directly below the middle of the group of points. Its position is directly below the mean of the explanatory variable. It has no influence. Its addition will leave the slope the same, 0.

4) Point b is almost in the center of the group of points, but not quite. It has very little influence, but what influence it has is positive. The slope will increase very slightly with its addition, to 0.05.

5) Point a is very influential. Its addition will pull the regression line up to its steepest positive slope, 0.85.

21. What’s the cause?
 1) High blood pressure may cause high body fat.
 2) High body fat may cause high blood pressure.
 3) Both high blood pressure and high body fat may be caused by a lurking variable, such as a genetic or lifestyle trait.

22. What’s the effect?
 1) Playing computer games may make kids more violent.
 2) Violent kids may like to play computer games.
 3) Playing computer games and violence may both be caused by a lurking variable such as the child’s home life or a genetic predisposition to aggressiveness.

23. Reading.
 a) The principal’s description of a strong, positive trend is misleading. First of all, “trend” implies a change over time. These data were gathered during one year, at different grade levels. To observe a trend, one class’s reading scores would have to be followed through several years. Second, the strong, positive relationship only indicates the yearly improvement that would be expected, as children get older. For example, the 4th graders are reading at approximately a 4th grade level, on average. This means that the school’s students are progressing adequately in their reading, not extraordinarily. Finally, the use of average reading scores instead of individual scores increases the strength of the association.

 b) The plot appears very straight. The correlation between grade and reading level is very high, probably between 0.9 and 1.0.

 c) If the principal had made a scatterplot of all students’ scores, the correlation would have likely been lower. Averaging reduced the scatter, since each grade level has only one point instead of many, which inflates the correlation.
d) If a student is reading at grade level, then that student’s reading score should equal his or her grade level. The slope of that relationship is 1. That would be “acceptable”, according to the measurement scale of reading level. Any slope greater than 1 would indicate above grade level reading scores, which would certainly be acceptable as well. A slope less than 1 would indicate below grade level average scores, which would be unacceptable.

24. Grades.

Perhaps the best way to start is to discuss the type of graph that would have been useful. The admissions officer should have made a scatterplot with a coordinate for each freshman, matching each individual’s SAT score with his or her respective GPA. Then, if the cloud of points was straight enough, the officer could have attempted to fit a linear model, and assessed its appropriateness and strength.

As is, the graph of combined SAT score versus mean Freshman GPA indicates, very generally, that higher SAT achievement is associated with higher mean Freshman GPA, but that’s about it.

The first concern is the SAT scores. They have been grouped into categories. We cannot perform any type of regression analysis, because this variable is not quantitative. We don’t even know how many students are in each category. There may be one student with an SAT score in the 1500s, and 300 students in the 1200s. On this graph, these possibilities are given equal weight!

Even if the SAT scores were at all useful to us, the GPAs given are averages, which would make the association appear stronger than it actually is.

Finally, a connected line graph isn’t a useful model. It doesn’t simplify the situation at all, and may, in fact, give the false impression that we could interpolate between the data points.

25. Heating.

a) The model predicts a decrease in $2.13 in heating cost for an increase in temperature of 1° Fahrenheit. Generally, warmer months are associated with lower heating costs.

b) When the temperature is 0° Fahrenheit, the model predicts a monthly heating cost of $133.

c) When the temperature is around 32° Fahrenheit, the predictions are generally too high. The residuals are negative, indicating that the actual values are lower than the predicted values.
d)
\[\hat{\text{Cost}} = 133 - 2.13(\text{Temp}) \]
\[\hat{\text{Cost}} = 133 - 2.13(10) \]
\[\hat{\text{Cost}} = 111.70 \]
According to the model, the heating cost in a month with average daily temperature 10° Fahrenheit is expected to be $111.70.

e) The residual for a 10° day is approximately -$6, meaning that the actual cost was $6 less than predicted, or $111.70 - $6 = $105.70.

f) The model is not appropriate. The residuals plot shows a definite curved pattern. The association between monthly heating cost and average daily temperature is not linear.

g) A change of scale from Fahrenheit to Celsius would not affect the relationship. Associations between quantitative variables are the same, no matter what the units.

26. Speed.
a) The model predicts that as speed increases by 1 mile per hour, the fuel economy is expected to decrease by 0.1 miles per gallon.

b) For this model, the \(y\)-intercept is the predicted mileage at a speed of 0 miles per hour. It’s not possible to get 32 miles per gallon if you aren’t moving.

c) The residuals are negative for the higher gas mileages. This means that the model is predicting higher than the actual mileage.

d)
\[\hat{\text{mpg}} = 32 - 0.1 \text{mph} \]
\[\text{mpg} = 32 - 0.1(50) \]
\[\text{mpg} = 27 \]
When a car is driven at 50 miles per hour, the model predicts mileage of 27 miles per gallon.

e)
\[\hat{\text{mpg}} = 32 - 0.1 \text{mph} \]
\[\text{mpg} = 32 - 0.1(45) \]
\[\text{mpg} = 27.5 \]
When a car is driven at 45 miles per hour, the model predicts mileage of 27.5 miles per gallon. From the graph, the residual at 27.5 mpg is +1. The actual gas mileage is 27.5 + 1 = 28.5 mpg.

f) The association between fuel economy and speed is probably quite strong, but not linear.

g) The linear model is not the appropriate model for the association between fuel economy and speed. The residuals plot has a clear pattern. If the linear model were appropriate, we would expect scatter in the residuals plot.
27. Interest rates.

a) \[r = \sqrt{R^2} = \sqrt{0.774} = 0.88 \] . The correlation between rate and year is +0.88, since the scatterplot shows a positive association.

b) According to the model, interest rates during this period increased at about 0.25% per year, starting from an interest rate of about 0.64% in 1950.

c) The linear regression equation predicting interest rate from year is:
 \[\hat{Rate} = 0.639794 + 0.247601(Year - 1950) \]
 \[\hat{Rate} = 0.639794 + 0.247601(50) \]
 \[\hat{Rate} = 13.0198 \]
 According to the model, the interest rate is predicted to be about 13% in the year 2000.

d) This prediction is not likely to have been a good one. Extrapolating 20 years beyond the final year in the data would be risky, and unlikely to be accurate.

a) The correlation between age difference and year is \[r = \sqrt{R^2} = \sqrt{0.755} \approx -0.8689 \] . The negative value is used since the scatterplot shows that the association is negative, strong, and linear.

b) The linear regression model that predicts age difference from year is:
 \[(Men - Women) = 33.396 - 0.01571 Year \] . This model predicts that each passing year is associated with a decrease of approximately 0.016 years in the difference between male and female marriage age. A more meaningful comparison might be to say that the model predicts a decrease of approximately 0.16 years in the age difference for every 10 years that pass.

c) \[(Men - Women) = 33.396 - 0.01571 Year \]
 \[(Men - Women) = 33.396 - 0.01571(2015) \]
 \[(Men - Women) \approx 1.740 \]
 According to the model, the age difference between men and women at first marriage is expected to be approximately 1.740 years. (This figure is very sensitive to the number of decimal places used in the model.)

d) The latest data point is for the year 2010. Extrapolating for 2015 is risky because it depends on the assumption that the trend in age at first marriage will continue in the same manner.
29. Interest rates revisited.

a) The values of R^2 are approximately the same, so the models fit comparably well, but they have very different slopes.

b) The model that predicts the interest rate on 3-month Treasury bills from the number of years since 1950 is $\hat{\text{Rate}} = 21.065432 - 0.356070(\text{Year} - 1950)$. This model predicts the interest rate to be 3.26%, a rate much lower than the prediction from the other model.

c) We can trust the newer prediction, since it is in the middle of the data used to generate the model. Additionally, the model accounts for 74.5% of the variability in interest rate.

d) Since 2020 is at least 15 years after the last year included in the newer model. It would be extremely risky to use this, or any, model to make a prediction that far into the future.

30. Ages of couples again.

a) The linear model is appropriate, since the scatterplot of the relationship between difference in age at first marriage and the year is reasonably straight, and the residuals plot is scattered.

b) For every 10 years that pass, the model predicts a decrease of approximately 0.26 years in average age difference at first marriage.

c) The y-intercept is the prediction of the model in year 0, over 2000 years ago. An extrapolation that far into the past is not meaningful. The earliest year for which we have data is 1980.

a) The association would be stronger if humans were removed. The point on the scatterplot representing human gestation and life expectancy is an outlier from the overall pattern and detracts from the association. Humans also represent an influential point. Removing the humans would cause the slope of the linear regression model to increase, following the pattern of the non-human animals much more closely.

b) The study could be restricted to non-human animals. This appears justifiable, since one could point to a number of environmental factors that could influence human life expectancy and gestation period, making them incomparable to those of animals.

c) The correlation is moderately strong. The model explains 72.2% of the variability in gestation period of non-human animals.

d) For every year increase in life expectancy, the model predicts an increase of approximately 15.5 days in gestation period.
According to the linear model, monkeys with a life expectancy of 20 years are expected to have gestation periods of about 270.5 days. Care should be taken when assessing the accuracy of this prediction. First of all, the residuals plot has not been examined, so the appropriateness of the model is questionable. Second, it is unknown whether or not monkeys were included in the original 17 non-human species studied. Since monkeys and humans are both primates, the monkeys may depart from the overall pattern as well.

32. Swim the lake 2010.

a) Only 2.0% of the variability in lake swim times is accounted for by the linear model.

b) The slope of the regression, 5.64, means that the model predicts that lake swim times are increasing by about 5.64 minutes per year. This means that lake swimmers are generally getting slower. However, this model has very weak predicting power, and an outlier, so we shouldn’t put too much faith in our prediction.

c) Removing this outlier is probably a good idea, since it doesn’t belong with the other data points, but its removal probably wouldn’t change the regression much. The fact that the point has a large residual indicates that it didn’t have much leverage. If it had leverage, it would have dominated the regression, and had a small residual. It would be nice to have a scatterplot to look at, in addition to the residuals plot. There could be other outliers that don’t show up in the residuals plot.

33. Elephants and hippos.

a) Hippos are more of a departure from the pattern. Removing that point would make the association appear to be stronger.

b) The slope of the regression line would increase, pivoting away from the hippos point.

c) Anytime data points are removed, there must be a justifiable reason for doing so, and saying, “I removed the point because the correlation was higher without it” is not a justifiable reason.

d) Elephants are an influential point. With the elephants included, the slope of the linear model is 15.4980 days gestation per year of life expectancy. When they are removed, the slope is 11.6 days per year. The decrease is significant.
34. Another swim 2010.

a) The smaller value of s_e means that errors in prediction are smaller for this model than the original model.

b) The regression accounts for only 6.0% of the variation in lake swim times, but it appears that Lake Ontario swimmers are getting slower, at a rate of about 7.2 seconds per year.

a) Modeling decisions may vary, but the important idea is using a subset of the data that allows us to make an accurate prediction for the year in which we are interested. We might model a subset to predict the marriage age in 2015, and model another subset to predict the marriage age in 1911.

In order to predict the average marriage age of American women in 2015, use the data points from the most recent trend only. The data points from 1955 – 2010 look straight enough to apply the linear regression model. Even though there is still curvature, it is nowhere near as bad as the curvature when all the data points are used.

Regression output from a computer program is given below, as well as a residual plot.

The linear model used to predict average female marriage age from year is: \[\hat{\text{Age}} = -210.827 + 0.117832 \text{Year}. \] The residuals plot shows a pattern, but the residuals are small, and the value of R^2 is high. 96.1% of the variability in average female age at first marriage is accounted for by variability in the year. The model predicts that each year that passes is associated with an increase of 0.118 years in the average female age at first marriage.
36. Unwed births.

The analysis that follows is one of several good models that may be used to predict the percentage of unwed births. The important feature to recognize is that these data consist of two distinct trends. Your modeling decisions may vary slightly from these, but that is fine, as long as those decisions are justified.

A scatterplot (at the right) of year vs. percent of unmarried births shows two distinct trends. From 1980 to 1994, there is a strong, positive linear association between year and percent of unmarried births. For the years 1995 to 1998, there is also a strong, positive, linear association, but the percent of unmarried births increases much more slowly from year to year, almost to the point of being flat. Two linear models will fit the relationship well.

\[
\hat{\text{Percent}} = -2021.41 + 1.0299(\text{year})
\]

is a good model for the years 1980 – 1994. A scatterplot of the relationship, with regression line, is shown above and to the right. \(R^2 = 99\% \), so the model explains 99% of the variability in percent of unmarried births. The residuals plot (at the right) is scattered, indicating an appropriate model.

\[
\hat{\%} = -326.92 + 0.18(\text{year})
\]

is a good model for the years 1995 – 1998. Although not as accurate as the first model, \(R^2 = 85.3\% \), which means that the model accounts for 85.3\% of the variability in percent of unmarried births. The residuals plot is scattered, indicating an appropriate model. Great care should be taken in using this model for predictions, since it was developed from only four data points. The slope of the regression line indicates that for each year that passes, the model predicts an increase of only 0.18\% unmarried births. The rate may have actually leveled out.

37. Life expectancy 2010.

a) The scatterplot of births rate and life expectancy is at the right. The association is moderate, linear, and negative. Countries with higher birth rates tend to have a lower life expectancies. There is one outlier, Paraguay, with a birthrate of 28 births per 1000 people, and a life expectancy of 76 years.
b) Computer regression output is given below.

- Dependent variable is: Life expect
- No Selectors
 - R^2 squared = 53.3%
 - R^2 squared (adjusted) = 51.28
 - $s = 2.548$ with $24 - 2 = 22$ degrees of freedom

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>163.157</td>
<td>1</td>
<td>163.157</td>
<td>25.1</td>
</tr>
<tr>
<td>Residual</td>
<td>142.843</td>
<td>22</td>
<td>6.49285</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>s.e. of Coeff</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>83.9566</td>
<td>1.957</td>
<td>42.9</td>
<td>≤ 0.0001</td>
</tr>
<tr>
<td>birth rate</td>
<td>-0.487037</td>
<td>0.69716</td>
<td>-5.31</td>
<td>≤ 0.0001</td>
</tr>
</tbody>
</table>

The linear regression equation that predicts life expectancy from birth rate is:

$$\text{LifeExp} = 83.9566 - 0.487037 \times \text{Birthrate}$$

c) $R^2 = 53.3\%$, so $r = \sqrt{R^2} = \sqrt{0.533} = -0.730$

53.3\% of the variability in life expectancy is explained by variability in the birthrate.

d) The residuals plot, at the right, is reasonably scattered. The linear model is appropriate.

e) Paraguay has a large residual. Its higher than average life expectancy continues to stand out.

f) The data point for Paraguay is not extraordinarily unusual. You may have chosen not to set it aside. If you did set it aside, the recomputed regression is:

$$\text{LifeExp} = 85.2955 - 0.57031 \times \text{Birthrate}$$

- Dependent variable is: Life expect
- No Selectors
 - R^2 squared = 65.4%
 - R^2 squared (adjusted) = 63.88
 - $s = 2.235$ with $23 - 2 = 21$ degrees of freedom

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>198.716</td>
<td>1</td>
<td>198.716</td>
<td>39.8</td>
</tr>
<tr>
<td>Residual</td>
<td>104.935</td>
<td>21</td>
<td>4.99695</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>s.e. of Coeff</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>85.2955</td>
<td>1.784</td>
<td>47.8</td>
<td>≤ 0.0001</td>
</tr>
<tr>
<td>birth rate</td>
<td>-0.57031</td>
<td>0.69044</td>
<td>-6.31</td>
<td>≤ 0.0001</td>
</tr>
</tbody>
</table>

$R^2 = 65.4\%$, so this new model accounts for 65.4\% of the variability in life expectancy. The relationship is a little stronger, but that will always happen when setting points aside from the regression. Whether or not to set Paraguay aside is a judgment call.
g) The government leaders should not suggest that women have fewer children in order to raise the life expectancy. Although there is evidence of an association between the birth rate and life expectancy, this does not mean that one causes the other. There may be lurking variables involved, such as economic conditions, social factors, or level of health care.

38. Tour de France 2011.

a) The association between average speed and year is positive, moderate, but not quite linear. Generally, average speed of the winner has been increasing over time. There are several periods where the relationship is curved, but since 1950, the relationship has been much more linear. There are no races between 1915 and 1918 or between 1940 and 1946, presumably because of the two World Wars in Europe at the times.

b) \[\text{Avg speed} = -266.68 + 0.153 \text{ Year} \]

c) The conditions for regression are not met. Although the variables are quantitative, and there are no outliers, the relationship is not straight enough in the early part of the 20th century to fit a regression line.

a) The trend in Consumer Price Index is strong, non-linear, and positive. Generally, CPI has increased over the years, but the rate of increase has become much greater since approximately 1970. Other characteristics include fluctuations in CPI in the years prior to 1950.

b) In order to effectively predict the CPI in 2016, use only the most recent trend. The trend since 1970 is straight enough to apply the linear model. Prior to 1970, the trend is radically different from that of recent years, and is of no use in predicting CPI for the next decade.
The linear model that predicts CPI from year is
\[\hat{CPI} = -8966.98 + 4.56931 \text{Year}. \]
\(R^2 = 99.5\% \), meaning that the model predicts 99.8% of the variability in CPI. The residuals plot shows some pattern, but the residuals are small, so the linear model is appropriate. According to the model, the CPI is expected to increase by $4.57 each year, for 1970—2011.

\[\hat{CPI} = -8966.98 + 4.56931 \text{Year} \]
\[\hat{CPI} = -8966.98 + 4.56931(2020) \]
\[\hat{CPI} = 263.03 \]

As with any model, care should be taken when extrapolating. If the pattern continues, the model predicts that the CPI in 2020 will be approximately $263.03.

40. Second stage 2011.

a) There is still some curving in the beginning of the period, but the relationship is straighter. The new linear model is \(\hat{\text{Avgspeed}} = -198.22 + 0.119 \text{Year} \).

b) According to the linear model, the average winning speed increases by about 0.153 kph per year.

c) Hinault’s 1979 time has a residual of 2.83 kph. He raced much faster than the model would predict, since the standard deviation of the residuals was 1.31 kph. Armstrong’s 2005 time had a residual of 1.59 kph. Hinault’s performance was more remarkable for its era.

41. Bridges covered.

a) The linear model is \(\hat{\text{Condition}} = -36.0501 + 0.021048 \text{Year} \), so a bridge built in 1853 is expected to have a condition of 2.952. The residual is 4.523 – 2.952 = 1.571.

b) When they were removed, \(R^2 \) increased, the slope increased, and the standard deviation of the residuals decreased. The two points were definitely exerting influence on the regression line.

c) According to either linear model, a bridge built in 1972 is expected to have condition of about 5.45, which is actually a little higher than the actual condition of 4.523. When you consider the restoration, the bridge isn’t remarkable.